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backward rather than forward (one goes from effects to prior causes),
concerned with a specific rather than the general case, and construc-

tive (one can synthesize, enlarge, or otherwise develop new hypotheses).

We have developed and tested models of two aspects of diagnostic infer-

inference: 4) judgments of the causal strength of a hypothesis/

explanation, and () how probabilistic assessments concerning the

occurrence of a past event are made on the basis of (often conflicting)

evidence received from less than perfectly reliable sources. The psycho-

logical rationales, quantitative formulations, and implications of these

models are presented in this report together with a description of various

experiments designed to test the models. We also discuss several
commonalities between the two lines of research: the use of cognitive

anchoring-and-adjustment strategies to cope with complex inference

tasks; the constructive nature of diagnosis; the importance of surprise
in inference; and the relation of the present work to normative standards

of judgment and choice.
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This report esunarizes our work on developing a theory of diagnostic

inference for the period April 1, 1981 through September 30, 1983. By

diagnosis, we mean the following: Given the occurrence of a set of outcomes/

results/smptois, people infer what causal process could have produced the

observed effects. The essential aspects of such inferences are that they are

causal rather than correlational, backward rather than forward (one goes from

effects to prior causes), concerned with a specific rather than the general

case, and constructive (one can synthesize, enlarge, or otherwise develop new

hypotheses). The importance of diagnosis goes beyond its obvious role in

making sense of experience; it is crucial for predictive judgment as vell as

for defining what variables are "relevant." Moreover, since the evidence

typically available for making diagnoses is fallible and/or conflicting, the

process takes place under uncertainty.

The development of our theory has followed two complementary paths:

(1) The formulation and testing of a theory of how causal judgments are made;

and (2) the creation of a theory of evidence that concerns how judgments are

II made in ambiguous situations. We consider each of these topics in turn.

Subsequently, we discuss some comonalities between the two lines of research.

aadgment of Causality

We have developed, and experimentally tested, a model of how people judge

the causal strength of a hypothesis/explanation. As a specific illustration,

imagine that a watch face has been struck sharply by a hammer and the glass

breaks. You are then asked to assess how likely the breakage was caused by

the force of the hmmer. We argue that answers to this question will be

mediated by three types of information: (1) The number and strength of
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specific alternative explanations. Part of the reason that the force of the

hmmer is a strong causal candidate is due to the fact that it is difficult to

imagine specific alternatives that could reduce one's belief in that explana-

tion; (2) The assmed causal background against which the judgment is made.

For example, reconsider your response to the above question if the context was

changed to a watch factory where a hammer strikes watch faces as part of a

testing procedure. In this context, it is more likely that a defect in the

glass will be judged to be the cause; (3) The judged causal strength of the

explanation. We maintain that people use certain cues-to-causality in

assessing the plausibility of an explanation; namely, temporal order,

contiguity, covariation, and similarity of cause and effect. In our example,

note that the glass broke immediately after being struck by the hammer; there

is a high correlation between the breaking (or not) of glass with the force of

solid objects; and there is similarity between the length and strength of

cause and effect.

The role of alternatives

Causal judgments are complex. We therefore propose that people handle

this task sequentially by a cognitive anchoring-and-adjustment strategy. This

can be illustrated by consic ring how people adjust causal beliefs by the

number and plausibility of specific alternative explanations. Consider an

outcome Y, an initial explanation X, and alternative explanation Z1 .

Furthermore, denote the *gross strength" of an explanation as being its

plausibility or strength before competing alternatives are considered. Thus,

the gross strengths of X and ZI refer to their plausibility when each is

considered the sole explanation of Y. We propose that people anchor on the

gross strength of th. initial explanation X, and then adjust downward for

the gross strength of Z1. Moreover, the amount of the adjustment will depend

i
i } I
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on the strength of the anchor as well am the strength of the alternative. In

particular, we assume that alternatives of equal strength discount strong

explanations more than weaker ones. For example, imagine that one anchors on

a weak hypothesis and is then confronted with a strong alternative. Since the

anchor is already low, the size of the adjustment cannot be too large (indeed,

if the anchor were worthless, there would be no adjustment). On the other

hand, if the anchor was strong, we argue that the same alternative would

discount the anchor substantially. Therefore, the basic idea is that the

stronger the anchor, the larger the adjustment (holding the strength of

alternatives equal). We call the strength of an explanation after it is

reduced by an alternative, its "net strength."

The above process can be formally represented as follows:

s1(Y,XB) - So(YXIB) - w0 s(Y,ZIfB) 1)

where,

S (YXIB) - net strength of the causal link of Y
with X, conditional on background B,
after adjusting for Z1

so(Y,XIB) - gross strength of the causal link of
Y with X, conditional on background B

s(Y,ZIIB) - gross strength of the causal link of Y
with Z, conditional on background B

wo - adjustment weight applied to the gross
strength of Z (0 4 w 4 1)

In equation (1) we adopt the convention that capital "S" stands for net

strength and mall "s" denotes gross strength. Of course, before any alter-

native is considered, So - so, Note that the adjustment weight, w, has the

same subscript as the anchor since it is a function of the latter. Now

' ?
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consider what happens when a second alternative, Z2  is introduced. We

assume that the anchor-and-adjust strategy proceeds sequentially so that the

net strength of X becomes the new anchor for the next adjustment. Thus,

S2(Y,XIB) - S1(YXIB) - wI s(YZ 2 1B) (2)

Equation (2) can be be generalized to account for the net strength of X

after the kth alternative (k = 1,2, ..., K); thus,

Sk(YXIB) - sk_(Y,XIB) - wk B(Y,ZkIB) (3)

Furthermore, since Sk(YXIB) is a judged likelihood, it is bounded between 0

and I.

Now consider the functional relation between the strength of the anchor

and the adjustment weight, w (called the "adjustment weight function"). It

was assumed above that stronger anchors have larger adjustments. This implies

that the adjustment weight is a monotonically increasing function of the

strength of the anchor. To see this, consider equation (3) when the gross

strength of Zk is constant and the anchor varies in strength. It is clear

that as Skl(Y,XIB) increases, Wk_l must also increase to give larger

adjustments. To model this monotonic relation, we posit a simple and

convenient form, although others might serve as well; thus,

wk - (Sk.l(Y,XIB)] (a 0) (4)Wk-k

I. . .
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Equation (4) is illustrated in Figure I. Note that a affects the amount by

nertefiure I about here

which explanations are discounted and can thus be thought of as varying as a

function of task and/or individual characteristics. For example, a > 1

implies that the adjustment weights are less than the anchor and corresponds

to underweighting the impact of disconfirming evidence; a - 1 implies that

adjustment weights equal the anchor; 0 4 a < I implies that adjustment

weights are larger than the anchor. The importance of this for the final net

strength of X can be seen by first substituting (4) into (3). This yields:

Sk,(YIXIB) - Sk.I(Y,XIB) - [Sk_,(YXIB), s(Yz kJB) (5)

which can be thought of as the computational form of the anchor-and-adjust

model. Indeed, as we have demonstrated empirically (see below), when a is

estimated from data, equation (5) can be used to predict how people revise

their causal judgments.

To illustrate how the model specified in (3) and (5) captures important

aspects of the causal judgment process, consider the model in its non-

sequential form,

(,1)" "o( l)0- wl wk-1(Y'zk (6)k,,1

That is, the net strength of an explanation is equal to its gross strength

minus the mm of the adjusted alternative explanations. In other words, we

posit that net strength follows a difference model as opposed to a ratio

model such as probability theory. This means that net strength can be low

when there are no alternatives if the gross strength of X is itself low.



Wk-I

S k-I(YX B)

Figure 1. The Adjustmuent Weight Function
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Moreover, net strength can also be low when gross strength is high if there

are many strong alternatives. Indeed, net strength can only be high if gross

strength is high and the strength of specific alternatives is low. For

example, reconsider the initial watch-hammer scenario and contrast the net

strength of the *force of the hammer" explanation with the net strength of any

single explanation for the following questions:

1. Why are the outer rings of Saturn braided?

2. Why was Ronald Reagan elected President in 1980?

For the first question, it is difficult to generate a single explanation,

thus suggesting its gross strength is low However, although there are no

competing explanations, net strength remains low in accord with equation

(6). For the second question, there are many strong explanations (e.g., the

situation of the economyr the rise of the moral majority; the unresolved

Iranian hostage probleml etc.). Therefore, while the gross strength of these

are high, the net strength for any single one is low precisely because the

others are plausible alternatives. On the other hand, the watch-hammer

question leads to high net strength since the explanation is strong and there

are few plausible alternatives. In short, it is argued that like cod

patterns, good explanations have few alternatives; or, to be more precise,

whereas good explanations imply few alternatives, the lack of alternatives

does not imply good explanations.

The causal background

Above, we have been careful to condition all terms on the causal back-

ground, B. We do this because diagnostic inference is typically invoked to

make sense of deviations via causal explanation. However, the meaning of a

deviation is itself crucially dependent on some assumed background or field.

Specifically, we argue that causal relevance is generally related to the

F .



degree that a variable is a difference-in-a-background. By this is meant that

factors that are part of some presumed background are judged to be of little

or no causal relevance. For example, does birth cause death? While the

former is both necessary and sufficient for the latter (and thus covaries

perfectly with it), it seems odd to consider one the cause of the other. The

reason is that death presumes that one has been born. Therefore, "birth" is

part of the background and its causal relevance is lu..

Cues-to-causality

In our model, the judged plausibility of a hypothesis/alternative (i.e.,

gross strength) is based on cues-to-causality. These are postulated to be

imperfect indicators of causal relations that combine and trade-off in judg-

ments of gross strength. Specifically, we define gross strength to be the

following function of the cues-to-causality;

s(Y,XIB) - Q(X2Q2 + X3Q3 + X4Q4) (7)

where,

Q, - temporal order = (0,0)

Q2 - contiguity

Q3 = covariation

Q4 - similarity

0 if Q4 < threshold

I if otherwise

A, importance weight for the ith cue (i 1, ... , 4)

Note that if either temporal order is inappropriate or similarity is

below threshold, gross strength is zero. Otherwise, the cues of contiguity,

covariation, and similarity will trade-off.
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perimental evidence

Throe types of experiment have been performed to test (1) the role of

alternatives via the sequential anchor-and-adjust model, (2) the use of the

cues-to-causality, and (3) the causal field oonet.

(1) Equation (5) was estimated and tested on data where subjects were

first asked to judge the gross strength of a hypothesis, and then assess its

net strength after sequential presentation of two specific alternatives. In

fact, the initial gross strength judgment and first assessment of net strength

were used to estimate the a parameter, and the second net strength judgment

was predicted on this basis. Across different permutations of hypotheses and

alternatives in two scenarios, the mean absolute deviation was a mere .02 for

judgments made on a 0 to I scale.

(2) A second series of experiments tested the role of the cues-to-

causality as operationalized in equation (7). Three cues, contiguity,

covariation, and similarity were varied factorially across 8 scenarios.

Results showed predicted main effects for covariation and similarity but not

contiguity. Furthermore, the data revealed interesting interactions between

the cues and the scenarios thereby emphasizing the notion that the cues are

perceived conditionally on the context or causal field in which they are

embedded. In a second experiment, when the contiguity cue was manipulated to

be more salient in the scenarios, significant main effects of the predicted

sign were observed. In these experiments subjects not only judged a causal

candidate, but made subsequent judgments after being informed of the presence

of specific alternatives. This permitted two further tests of our model:

(a) predictions using equation (5); and (b) a test of the similarity threshold

hypothesis implicit in equation (7). In both cases, our hypotheses were

supported by the data.

AL.-- .
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(3) Recall the example given above of the hammer hitting the face of a

watch when no explicit context is provided and when the scene is supposed to

take place in a watch factory. The effect of this shift in the causal

background, with its corresponding change in the strength of causal candidates

(the force of the hammer vs. a defect in the glass) was tested experimentally

in both a between- and within-subjects design. The results provided strong

support for the notion that shifts in the background can have dramatic effects

on attributions of causality.

To summarize, the three components of our model (role of alternatives,

cues-to-causality, and background) were tested and found to support our con-

ceptualization. Whereas we clearly do not claim that our model provides a

complete picture of the myriad issues involved in causal judgment, it does

provide a solid, and parsimonious foundation on which to build. Furthermore,

our model can be shown to subsume, and even quantify, earlier attempts to

conceptualize causal judgment, e.g., various attribution theories

Nvaluft.ing Evidence undmr mbiguity

An important input to diagnostic inference is the evaluation of evidence.

Moreover, this usually takes place under conditions of uncertainty thereby

invoking probabilistic reasoning. However, in an important paper Daniel

Ellsberg demonstrated that subjective probabilities inferred from choices

amongst gambles do not necessarily conform to the axioms of probability

theory. Specifically, Ellsberg showed that such violations are likely to

occur in ambiguous conditions where lack of knowledge about the process

generating outcomes induces uncertainty about one's own degree of uncer-

tainty. Contrast, for example, the nature of the uncertainty one faces in

choosing between heads or tails on the flip of a fair coin as opposed to the

uncertainties involved in deciding between two candidates for President.

Me- 0-
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Task description

The task we have explored requires subjects to assess the likelihood that

a particular event happened given f reports favoring its occurrence and c

reports favoring an alternative. The reports are deemed to emanate from a

single source (e.g., witnesses) and to carry equal weight. A model of the

task is depicted in Figure 2. That is, (1) an event occurs, (2) it is sensed

by a source that can, in principle, be characterized by levels of sensitivity

nse9rt Fi.e 2 about here

and bias, (3) the source decides what to report (this can be thought of as

analogous to a signal detection task), (4) several reports are obtained, and

(5) the judge combines the reports with expectations based on the content of

the scenario to come up with a likelihood judgment, S(f:c). It is important

to note that in our task no explicit information is given to the subjects

about the reliability (sensitivity, bias) of the reporting source. Rather,

this must be inferred from the content of the scenarios. Thus, expectations

held by the subjects (5) are inferred from ambiguous stimuli.

The importance of ambiguity in our task can be emphasized by contrasting

it with more commonly studied probabilistic paradigms: (a) whereas we are

dealing with inference from unreliable sources, this is not the standard cas-

caded inference task in that the judge does not know the precise level of the

source's reliability; (b) we cannot apply the theory of signal detection since

too many parameters are unknown (e.g., the source's hit-rate and false-alarm

rate). We have, instead, a case of several observers reporting on one event

(trial) as opposed to multiple trials of the same observer, and (c) the

standard Bayesian paradigm cannot be applied since no values are given either

for the prior probabilities of events or source reliability. However, since

precise probabilities are not available in many important real-world problems,
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we believe that the ambiguity inherent in our task is both realistic and

important.

A model for ambiguous inferences

Our model of how people handle the above task involves anchoring on the

evidence presented ("what is") and adjusting for outcomes that one could

imagine occurring ("what night have been"). That isl

8(f:c) - p + k (8)

whore p - f/n, the proportion of reports favoring the hypothesis, and k

captures the net effect of imagining (i.e., mentally simulating) alternative

outcome greater and smaller than p. Specifically, we postulate that k

will be affected by four variables: (1) the level of p since if p - 1,

k 4 0; but if p - 0, k ' 0; (2) n, the number of reports; (3) a parameter

e that reflects the perceived lack of credibility of the source and dissimi-

larity of the signals (0 4 e 4 n); and (4) the effect of differentially

weighting imagined outcomes greater and smaller than p. This is captured by

a parameter 0. The full model is;

S(f:c) - p + (I - p - pO) (9)

and is illustrated in Figure 3. Note that the absolute size of the adjustment

Insert FiVgr 3 about here

from p increases in e but decreases in n. Note further that S(f:c) is

regressive with respect to p. Moreover, the parameter 0 implies a unique

value of p, denoted Pc' for which k - 0 and thus where 8(f:c) - p. We

interpret 0 as the individual's "attitude toward ambiguity in the circum-

stances." In summary, note that when (f/n) - P PC, k > 0 so that S(f:c)

> pi however, when (f/n) - P > Pc' k (0 so that S(f:c) ( p.

_ _ _ -AP-



1 1 ln

S(f:C) S(f:C)

n e

PC PC

$P P

(a) (b)

Figure 3. Two examples of S(f:c) as a function of p.
in (a), 0 1 implies p C< .5; in (b),

B> 1 implies PC > C5



13

Experimental evidence

We have tested our model and its implications in a series of four

experiments.

(1) Using a scenario involving a hit-and-run accident and witnesses'

conflicting responses as to the color of the offending car, we have tested

and fitted equation (9) on both group and individual data. We have (a) demon-

strated how subjects trade-off p and n in assessing the impact of

evidence, and (b) as implied by our model, subjects' judgments of the

probabilities of complementary events do not necessarily sum to one. More

specifically, the parameters of our model (i.e., G and B) define the

conditions under which such judgments will be additive (i.e., sum to one),

sub-additive, or super-additive. Moreover, our data bear out these

predictions for both groups and individual subjects.

(2) In a replication experiment we demonstrated the validity of the

model over four additional scenarios involving different content.

(3) In a factorial experiment, we manipulated both the credibility and

dissimilarity of the sources of evidence in order to induce differences in the

6 and B parameters. Source credibility was seen to have a significant

effect on both parameters (i.e., on the means of the parameters of individual

subjects), but no effect was observed for source dissimilarity. Moreover,

these results were obtained in both between- and within-subject designs. In

addition, we investigated and found consistent individual differences in

subjects' judgmental strategies. That is, subjects' individual 6 and

parameters were significantly correlated across tasks involving different

scenarios. In addition, the extent to which subjects made adjustments for

"what might have been," as measured by their e parameters, was significantly

related to the mean absolute deviations between their actual judgments and
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model predictions. We interpret this finding as evidence that the ability to

execute a judgmental strategy consistently is inversely related to the amount

of mental simulation used in generating responses.

(4) We investigated whether individuals' choices between gambles could

be predicted from knowledge of their e and 0 parameters estimated from a

separate inference task. Not only did we find that such choices between

gambles could be predicted quite well, but strength of preference between

gambles was related to the 0 and 8 parameters in a theoretically

consistent manner.

To summarize, our experimental data support our descriptive model of how

people handle the ambiguity inherent in a diagnostic inference task via a

cognitive anchoring-and-adjustment strategy. We believe that the success of

our modeling efforts underscores the importance of incorporating the effects

of ambiguity in the perception of uncertainty as well as on risky choice.

Important real-world risks are rarely defined explicitly (i.e., unambiguously)

and thus it is essential to understand how people treat ambiguous evidence.

Second, in trying to analyze our subjects' inference task from a normative

perspective, we were struck by the number of assumptions one would need to

make to apply an appropriate model, let alone the need for computation such a

model would impose. And yet, our subjects were able to provide consistent

responses to the experimental stimuli by essentially striking a compromise

between "what was" (i.e., the data) and "what might have been" (i.e., the

result of the imagined outcomes) via a quite simple cognitive strategy. In

addition, whereas the subjects' judgments deviated consistently from some

normative prescriptions, it would be difficult to say that they were not

acting sensibly.
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somm O0moaliti s

The development of our theory of diagnostic inference has followed two

complementary paths. we now discuss some comonalities between these two

lines of research.

(1) Anchoring-and-adjustment strategies. Both our models are based on

the notion that people use cognitive anchoring-and-adjustment strategies to

handle complex inference tasks. In the causal model, it is assumed that

people anchor on the gross strength of the hypothesis and then adjust,

sequentially, for the strength of specific alternatives. Moreover, we posit

that the adjustment weight at each stage is a function of the associated

anchor. n the ambiguity model, there is also an adjustment for alternatives

that "might have been." Note that in both models the assumed details of the

anchoring-and-adjustment processes have been made quite explicit. More

generally, we believe that anchoring-and-adjustment strategies are prevalent

in many sequential judgment tasks. Thus, the payoff from investigating such

strategies carefully in these tasks could also be substantial in other areas

of judgment and choice.

(2) Construction in diagnosis. Diagnosis is largely a constructive

activity. This is particularly evident in the causal model when one examines

the role of the causal background. People respond very quickly to cues in the

causal background that allow them to shift the perspective within which a

problem is viewed (recall the hmsmr and watch face example). n the ambi-

guity model, expectations and imagination clearly play important roles in

simulating "what might have been." Neither of our models could be said to

provide an account of construction in the diagnostic process. However, since

both models incorporate some aspects of construction, they do provide a

foundation upon which this crucial cognitive activity can be investigated.

I

... .... .. ..-
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(3) Surprise in inference. Our models can also be thought of as

throwing some light on the importance of surprise in diagnostic inference.

Surprise is a reaction to discrepancies between expectations and reality.

Thus, in the causal model we note that surprise, in the form of deviations-in-

a-field, is an important stimulus to diagnostic activity. Also, since the

cues-to-causality can induce expectations, when these are violated the

resulting surprise will trigger diagnostic activity and attempts to rein-

terpret experience. In the context of the ambiguity model, we note that data

can create surprise (relative to expectations) either because they are "too

good" or "not good enough." Indeed, when data are perceived to reach a given

level of unreliability, our model predicts that if data are "too good," the

surface meaning will suggest the opposite conclusion. To illustrate, consider

your reaction if you were assessing whether a particular car had been speeding

(i.e., travelling at more than 55 m.p.h.) and 10 eyewitnesses each indepen-

dently stated that the car had been travelling at 73 m.p.h. Both the complete

agreement of the witnesses and the level of precision of their responses are

such that you would probably dismiss the data. From equation (9), and

assu-ing that e (the source unreliability parameter is at its maximum of

n), we obtain

S(f:c) - 1 - po (10)

which, since p - (f/n) - 1 (all witnesses agreed) becomes 0. in other

words, when high source unreliability is attributed to witnesses, our model

specifically predicts a constructive rejection of the evidence. On the

other hand, our model cannot handle situations where data are "not good

enough" since the resolution of this type of surprise requires a creative

re-organization of the hypotheses being considered. This extension is one of

several challenges for future work.
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(4) Normative issues. In research on judgment and decision making it is

almost mandatory to compare subjects' responses with normative benchmarks.

However, this is problematic in the present research. First, there is no

normative theory for judgments of causality. Second, it is unclear what the

normative model should be in reference to our model of judgment under ambi-

guity. To be sure, the latter model deviates from Bayesian prescriptions in

two respects: (1) as n increases judgments asymptote at p instead of 0

or I. Hovever, this result can also be obtained in some cascaded inference

models that are based an Bayes' theorem: (2) under certain circumstances,

judgments of the probabilities of complementary events do not am to one in

our model. Whereas this possibility might be considered a "mistake," we note

that there is currently considerable interest in the normative status of non-

additive probabilities, the role of the "weight of evidence" in determining

probabilistic belief, and so on. Our descriptive model, however, specifies

the precise conditions under which additivity/non-additivity will occur, and

in doing so captures how people respond to the "weight of evidence" in their

judgments.

Given the lack of a normative theory of causality, what contribution can

our model of causal judgment make to assessing the quality of diagnostic

inference? Whereas we have no definitive answer to this question, we note

that our model does highlight two relevant trade-offs. First, our

conceptualization of the cues-to-causality posits that these are imperfect,

probailistic indicators of causal relations. Thus, whereas the cues will

indicate appropriate causal relations in the environment, they can also

indicate invalid relations thereby inducing mistaken beliefs. For a limited

organim dealing with a vastly more complex environment, it is certainly

appropriate to deal consistently with a limited number of cues-to-causality,

I!
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and particularly since these can combine in myriad ways. On the other hand,

the use of these cues will inevitably imply a trade-off between acquiring some

valid causal knowledge, on the one hand, and some superstitions, on the other.

Second, the causal field and the cues-to-causality both play an important

role in limiting the nmber of interpretations people make in inferential

tasks, and thus in creating "order-out-of-chaos." Furthermore, the adoption

of a particular background and the use of the cues proceed quickly and are

often marked by a lack of awareness that a delimiting process has taken

place. The benefits to be gained from such automatized processes are large.

However, they come at the cost of reducing the probability that people can

achieve more creative representations of inferential tasks. In short, the

organism may often face a trade-off between stable representations of

problems, on the one hand, and the possibility of generating more creative

representations of the same stimuli, on the other.

Finally, whereas this report has described the work accomplished to date

in the construction of our theory of diagnostic inference, it should be

realized that a comprehensive theory is far from complete. However, we do

believe that we now have solid foundations on which to examine both the

psychology of causal reasoning and the interpretation of fallible, conflicting

evidence. It is on these foundations that we are extending our theoretical

and empirical investigations.
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